

UCD Institute of Food & Health

Genetic Variation in Chemosensory Receptors: Linking Genetics and Food Choice

Dr. Emma Feeney

Research Program Manager, Food for Health Ireland UCD Institute for Food and Health 17th May 2017

emma.feeney@ucd.ie

Smart science, good food

www.ucd.ie/foodandhealth

Overview

- Taste as a driver of food choice
- Taste & flavour
- Genetic differences in taste and smell
- Variations linked to food preferences
- Considerations for the consumer

TASTE : Can influence our food choice

- Personal food values
- Used to make choices
- Influenced over life course
- Can vary from person to person and within eating situation
- Taste : important food-related value

2016 n=1,003

FOOD INFORMATION

Arrows indicate significant (.95 level) differences vs. 2015.

International Food Information Council Foundation 2016 Food and Health Survey

Taste – consistently no.1 factor in purchasing for last decade

What is taste?

• What we perceive in absence of smell

Also chemosensations:

- - Burning (TRPV1)
- Cooling (TRPM8)

Figure 3. Taste transduction in (A) bitter, sweet and umami (B) Sour and (c) Salty taste

Figure 4. Taste receptors for prototypical tastes

Flavour: A multisensory perception

- taste
- smell
- trigeminal sensation

Flavour – a multisensory perception

- Taste
- Smell
- Trigeminal sensation
- Vision, sound

Figure 5. Impact of colour on taste intensity

Individual Differences in Perception

 Classic example: Bi-modal distribution of PROP / PTC intensity

Irish children: Supertasters ½ as likely to have tried green veg

Fig. 6. Data from Feeney et al, (2014) Genetic and environmental influences on liking and reported intakes of vegetables in Irish Children- Food quality and Preference

Supertaster tongue? Probably not....

Supertaster tongue doesn't seem to exist...

(Feeney & Hayes, Chemical Senses, 2014; Feeney & Hayes, Chemosensory. Percept, 2014)

Females have a greater density of FP than males

Genetic variation in bitter taste...

•Now known – 25-30 bitter taste genes

•TAS2R38 discovered in 2003

Encodes PTC receptor

•Also binds other N-C=S compounds

•Each codes for a receptor

 Receptors may bind multiple compounds

Figure 8. Phylogenetic tree of TAS2R gene family

(Adapted from Behrens & Meyerhof, 2006)

Bitter taste receptors - GCPRs

Figure 9. Typical structure of GCPRs

Figure 10. TRC in mammals and their ligands, adapted from Yarmonlinsky et al, (2009) Cell

Genetic variation in umami and sweet receptor genes

Gene	SNP	Association and possible mechanism, if known	Taste quality affected
TAS1R1	A372T ⁽³⁰	T associated with high sensitivity. Mechanism unknown	Umami
	G1114A ⁽⁹⁵	A associated with high sensitivity. Mechanism unknown	Umami
	C329T ⁽⁹⁵⁾	T associated with low sensitivity. Mechanism unknown	Umami
TAS1R3	R757C ^(30,)	C associated with lower sensitivity. Mechanism unknown	Umami
R247H ⁽³⁰⁾ A5T ⁽⁴³ C2269T ⁽⁴³⁾ C1266T ⁽⁴¹⁾ H associated with increased sensitivity binding with L-glutamate resulting in A associated with heightened perception T more frequent in nontasters. Mechan T alleles result in reduced promoter act	H associated with increased sensitivity. Possibly influences	Umami	
		binding with L-glutamate resulting in stronger activation of taste system.	
	A5T ⁽⁴³	A associated with heightened perception.	Umami
	C2269T(80	T more frequent in nontasters. Mechanism unknown	Umami
	C1266T ⁽⁴¹	T alleles result in reduced promoter activity	Sweet
	C1572T ⁽⁴¹⁾	T alleles also result in reduced promoter activity in this mutation	Sweet

Table 1. Known SNP associations with umami and sweet perception in the TAS1R gene family, adapted from Feeney *et al.*, (2010)

Taste genetics – may affect coffee intake

TAS2R43

TAS2R38

Fig. 11. Mean daily coffee intake (ml/day) across variations of TAS2R43, which responds to caffeine (left) and TAS2R38, which responds to PTC (right). **Davis and Feeney (2015), presented at Pangborn, Sweden**

Taste genetics: Can affect sweetener preference

Chem. Senses 38: 379-389, 2013

doi:10.1093/chemse/bjt017 Advance Access publication April 17, 2013

Bitterness of the Non-nutritive Sweetener Acesulfame Potassium Varies With Polymorphisms in TAS2R9 and TAS2R31

Alissa L. Allen^{1,2}, John E. McGeary³⁻⁵, Valerie S. Knopik^{4,5} and John E. Hayes^{1,2}

¹Sensory Evaluation Center, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, USA, ²Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, USA, ³Providence Veterans Affairs Medical Center, Providence, RI, USA, ⁴Division of Behavioral Genetics, Rhode Island Hospital, Providence, RI, USA and ⁵Department of Psychiatry & Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA

Correspondence to be sent to: John E. Hayes, Department of Food Science, Pennsylvania State University, 220 Food Science Building, University Park, PA 16802, USA. e-mail: jeh40@psu.edu

Odor receptors are also implicated in food preferences..

Table 2. Functional SNPs in chemosensory genes

SNP ID/ Position	Gene	Region	Chemosensation	Reference	Liking / Intake
R88W, T133M	OR7D4		Androstenone odor, androstadionone odor	Keller (2007); Knaapilla	May affect acceptance of boar tainted pork
Not actually a SNP – the non- functional allele is a pseudogene	OR11H7P	Coding region	Isovaleric acid	Menashe, (2007)	
rs 7277172	OR4N5		?		Cilantro preference
rs427871	TAS2R1		Bitter receptor		Cilantro preference

Adapted from Hayes, Feeney and Allen (2013) Food Quality and Preference 30; 202–216

Ihatecilantro.com

Odor receptors....

	M	M	m	m	M	M	\mathbb{D}	M	M	m	M	m	M	M	1
Odorant receptors	1	2	3	4	5	6	7	8	9	10	11	12	۳ 13	14	
Odorants															Description
А ~~Чон					0										rancid, sour, goat-like
В ~~~он						0									sweet, herbal, woody
С Дон	\bigcirc			0	0		\bigcirc			0	0				rancid, sour, sweaty
D ~~~он		\bigcirc			0	0									violet, sweet, woody
Е ~~~~Чон	\bigcirc			0	0		0	0		0	0	0			rancid, sour, repulsive
F ~~~он				0	0		0			0					sweet, orange, rose
G	\bigcirc			0	0		0	0		0		0		0	waxy, cheese, nut-like
Н				0	0		\odot			0		0			fresh, rose, oily floral

MODIFIED AFTER LINDA BUCK AND COLLEAGUES IN CELL VOL 96, MARCH 5, 1999

Figure 12. Schematic of odor perception

Strongest Imaginable

Very Strong

Strong

Moderate

× Person 2

– Weak

Barely Detectable

Becomes more complicated with real beverages & foodsinteraction of many compounds and tastes:

Genetic differences and diet quality

Appetite

Volume 113, 1 June 2017, Pages 116–123

Suprathreshold measures of taste perception in children -Association with dietary quality and body weight

Emma L. Feeney^{a,} ▲, ^M, Sinead A. O'Brien^a, Amalia G.M. Scannell^b, Anne Markey^b, Eileen R. Gibney^a **∃** Show more

nttps://doi.org/10.1016/j.appet.2017.02.026

Get rights and content

Taste receptors also found in the gut

- TAS2R38 association with glucose homeostasis
- Gnat3 is involved in sweet taste
 variations sweet perception
- Implicated in GWAS study of metabolic syndrome
- How? Interaction / signalling in gut?

(Fushan et al, Chem senses, 2010; Feeney *et al* 2013, Nutrient Sensing in the Gut, Hamburg)

Challenges: Complexity of human perception

Separating genetic variation from other taste intensity influences?

Modeling the interaction of receptors with real foods?

Modeling all known genetic variations in chemoreceptors together to predict taste perception?

Relating this to food liking?

Modeling signaling in gut?

These are just taste -Odor receptors (flavour)– over 400 known – predicting interaction??-Machine learning ?

Summary – taste is important!

- Taste is a key driver of food choices
- Taste & odour perception can vary considerably
- Individual differences in perception a key consideration
 - Affects food choice, liking, drives market segmentation
 - Important to know your data, and your target group
 - Sometimes choices may be necessary